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Abstract—The current research on the topic Machine Learning 

and especially the domain of Natural Language Processing has 
gained much popularity in the modern era.One such framework for 
attaining NLP tasks is word embedding, which represent data as 
vectors i.e. real numbers rather than words of natural language 
because neural networks do not understand them naturally. Word 
embeddings try to capture both syntactic and semantic information of 
words and capture relationships according to context and 

morphology. This paper reviews each word embedding technique 
available in the contemporary world ranging from traditional 
embeddings based on frequency of terms to pre-trained embeddings 
like prediction-based embeddings. The goal of this paper is to present 
the myriad methods available for word embedding, classify their 
working patterns, also identifying their pros and cons for working on 
text classification and detect their hegemony over the traditional 
methods of NLP.   

Keywords—CBoW; Deep Learning; fastText; GloVe; Machine 
Learning; Natural Language Processing(NLP), Skip-Gram; Word 
Embeddings. 

I. INTRODUCTION  

The modern world is called the “data age” because data is 
the new tool or weapon for achieving laurels in the business or 
corporate era. The correct and updated data (or information) is 
the most prominent thing required by the commercial houses 
either small or big to gain a candid advantage over its 
competitors. Nowadays, more and more companies are 
investing capital (human resource, money and time) in data 
collection, processing and analytics. This process involves 
enormous data harvesting or warehousing from numerous 
sources whether social media or traditional methods, and then 
processing this whole data so that data collected from various 
sources is in a common format. It is quite vital as unstructured 
data is estimated to be approximately 70% of the total data 
accumulated; which must be brought to same format to apply 
mathematical or statistical functions.  

These functions help in analyzing the data and discovering 
the hidden patterns or the information. By doing so, the 
companies get a real insight on customer behavior, buying 
pattern and potential customer identification for peculiar 
products and services; which is mandatory in the 
contemporary world to boost the productivity and revenue. 
There are myriad mechanical or algorithmic paradigms 
available for customers’ opinion mining such as Rule-based 

approach, Machine Learning and Deep Learning, etc. which 
try to learn the exact sentiments behind customers’ reviews 
and predict them accurately[1].  

Rule-based approaches are based on defining a bunch of 
rules for identifying the intensity and emotions that a word 
expresses[2].These rules must be logical, intuitive for a 
particular domain under consideration and should also take 
into account the sarcasm and satire. The chief concern in rule-
based approaches is their static behavior i.e. the rules are static 
and do not change rapidly with time, which make them 
obsolete soon. However, it must be considered that data is too 
dynamic these days and hidden patterns contained in data 
change quickly also[3]. Another imperative hindrance in rule-
based systems is the huge amount of hard work and testing 
involved, which makes it sluggish. Also, rule-based systems 
give excellent results in a narrow domain, but behave poorly 
when it comes to generalization[4]. Due to these quandaries, 
the rule-based approach got obsolescent and machine learning 
algorithms surfaced which is used widely today for data 
analytics.  

Machine learning is the state-of-art branch of Artificial 
Intelligence, which uses statistical models and algorithms to 
attain a precise task using inferences and patterns present in 
the data itself rather than explicit directions from humans[5]. 
The machines (or computers in this case) learn by gaining 
knowledge from past know-hows and then try to practice it in 
the unknown but related domains. There are copious 
categories of machine learning available chiefly supervised, 
unsupervised, reinforcement, semi-supervised, self-supervised, 
multi-instance, inductive, deductive, transductive learning, etc, 
which are used specifically for particular tasks.  

The machine learning approach varies its underlying 
algorithm according to the varying data and hence more 
dynamic than rule-based approach[6]. The usual problems 
solved by machine learning are classification, clustering, 
dimensionality reduction, anomaly detection, etc. and some of 
the noteworthy machine learning algorithms to handle these 
hitches are Naïve Bayes, Support Vector Machine, K-Nearest 
Neighbor, Decision Trees, etc. Overall, it can be said that 
machine learning is very adaptive which learns patterns from 
data and therefore can be applied to plethora of applications 
like natural language processing, spam detection, sentiment 
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analysis, recommendation systems, genre (multi-class) 
classification, stock prediction, etc[7].  

 
Fig. 1: How machine learning works[8] 

Last but not the least is the Deep learning methodology, 
which is nothing but group of algorithms and models that 
entailmanifold processing layers. Deep learning is the newest 
branch of Artificial Intelligence which uses artificial neural 
networks (similar to neural network present in human brain) 
for the process of learning and predicting[9]. Therefore, it can 
be defined as the science of making machines intelligent my 
making them learn by example, just like the humans do. It is 
usually an unsupervised kind of learning which can absorb 
information from either structured or even unstructured data; 
hence it is practically more useful than its counterparts.  

There are plenty of applications of deep learning like 
natural language processing, self-driving cars, healthcare, 
financial fraud detection, fake news detection, virtual 
assistants (like Siri, Cortana & Jarvis) etc. The next section 
discusses the need of word embeddings. Section III details 
about the numerous types of word embeddings. Section IV 
gives an insight on the traditional word embeddings and 
segment V deliberates the pre-trained word embeddings. 
Finally, the next section specifies the conclusion for the 
article. 

II. WORD EMBEDDING AND ITS NEED 

Machine learning as well as Deep learning basically uses 

the neural networks and its myriad variations like Convolution 

Neural Networks, Recurrent Neural Networks, etc. to handle 

the perplex problems especially in the domain of text 

processing. Nevertheless, the key point here is that the neural 

networks cannot directly use the natural languages like English 

or Hindi because neural nets do not understand the words or 

phrases; instead they use numerical data. This is where word 

embedding comes into play i.e. represent the textual 

information from languages into statistics.  

In short, word embeddings can be explained as the 

numerical representation of a documenttexts’ semantic 

meaning[10]. These vectors actually provide the relation 

between various words or phrases of the documenti.e. the 
words having similar meaning have closer vector values, 

which establish their closeness in the linguistics. For example, 

the word “male” is proximate to “King” and “Boy” and quite 

far from “Queen” and “Princess”, as shown in figure 2. 

 

 
Figure 2: Example of Word Embeddings[11] 

It is essential to understand that word embedding is not the 

mere translation of texts into numbers rather it conveys the 
semiology meanings of the words. The distance between 

vectors represent the similarity between myriad words[12]. In 

brief, it can be concluded that computers are incapable of 

understanding natural language’s words and that’s why word 

embeddings are required. Also, encoding phrases into numeric 

form can make mathematical functions especially matrix 

operations successfully operate for NLP tasks.  

Word embeddings can be categorized broadly into two 
categories namely Frequency-based and Prediction-based. As 
the name suggests, Frequency-based embeddings take into 
account the frequency or number of times a word occurs in the 
document to find its relevance. It is also called count-based 
embeddings and its principal point is to give weights 
according to the occurrence and also the 
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context[13].Frequency based word embeddings can again be 
classified into: Count Vector, TF-IDF Vector and Co-
Occurrence. The Prediction-based embeddings fundamentally 
consists of two major approaches: Continuous Bag-of-Words 
(CBOW) and Skip-Gram that come together to form the 
Word2Vec which is the prominent state-of-art model of word 
embedding. Each of the above will be discussed in detail in 
the following sections.  

III. COUNT-VECTORIZATION 

Count Vectorizing or One-Hot Encoding (OHE) is the 

most basic word embedding that works on a simple binary 

principle and produces a high-dimensional sparse matrix. 

Firstly it creates a bag-of-words (vocabulary) from all the 

given text or corpus, which is defined as the assemblage of 

similar text. Secondly, it counts the occurrence of each word 

in the document existing in the corpus. The final output of 

count vectorizing is a sparse matrix with dimensions D*T; 
where D denotes number of documents and T signifies number 

of dissimilar words in the vocabulary[14]. This can be 

understood by the following example:  

Document 1 (D1): “The dog ate the cat”. 

Document 2 (D2): “The lion can eat a cat”. 

As displayed above, there are two documents i.e. D=2 and 

total 8different words thus making T=8 in the corpus: {“the”, 

“dog”, “ate”, “cat”, “lion”, “can”, “eat”, “a” }. Hence, count 

vectorizing encoding for the above corpus should be: 

Table 1: Example of Count Vectorization 

 the dog ate cat lion can eat a 

D1 2 1 1 1 0 0 0 0 

D2 1 0 0 1 1 1 1 1 

The matrix generated is self-explanatory: if a word appears 

in a corresponding document, it is given the value “1”, else 

given “0”. If a word appears multiple times, it can be given 

that frequency; just like “the” word is coming two times in the 

D1, hence value of “the” is marked as 2 for D1. As the words 
“lion”, “can”, “eat” and “a” are absent in D1, hence they are 

assigned “0” for D1. Similarly, the words “dog” and “ate” are 

not given in D2 and marked “0”.Each cell in the matrix 

corresponds to one document and one precise word in the 

corpus. Usually a corpus contains 1000s of sentences with 10s 

of words, thus producing a lot of words which are not 

occurring in most of the documents. Thus the topmost pickle 

in this embedding is the occurrence of cells with loads of 0’s, 

hence called the sparsity matrix with high dimensions. 

Nonetheless, these dimensions or features can be diminished, 

so that visualization is possible because of lower 

dimensions[15]. One way of doing so is to eliminate 

commonly occurring words also called “stopwords” from the 

corpus. This whole process of generating table is called 

tokenization i.e. identifying all the individual words present in 

the corpus.  

IV. TF-IDF VECTORIZATION 

The full abbreviation of TF-IDF is “Term Frequency – 

Inverse Document Frequency”. The phrase “Term Frequency” 
refers to the incidence of a term in a document divided by the 

entire amount of documents; while the term “Inverse 

Document Frequency” denotes the logarithmic value (to the 

base 10) of whole number of documents divided upon the 

magnitude of documents a specific term is appearing in.  

 
Figure 3: TF-IDF values for words according to their frequency[17] 

The product of TF and IDF values for a word is known as 

its TF-IDF weight; its higher value signify rarity of a term and 

vice-versa[16]. TF-IDF vectorization is the embedding which 
removes the problem in count vectorizing which simply 

records the occurrence of a particular word in the document 

irrespective of its significance[18]. Actually the commonly 

used words like “a”, “an”, “the”, “this”, “that”,  “is”, “am”, 

“are”, etc. are most likely to appear in the documents and their 

frequency does not mean they are strongly imperative, instead 

they are least important. Hence, TF-IDF tries to eliminate 

these frequent words by assigning them lower weights and try 

to include more noteworthy terms by empowering them with 

more weight values[19]. For example, when a 1000-word 

document on cryptography comprises the word “cipher” 145 

times, the TF value for this word is 145/1000 i.e. 0.145. Also 
consider if the term “cipher” is contained in 40 documents out 

of total 1000 documents in the corpus, then IDF value will be 

calculated by formula log10 (1000/40) → log10(25) → 1.398. 

Having calculated both TF and IDF values, the final TF-IDF 

value can be deliberated by their multiplication:   

TF-IDF for word “cipher” is 0.145 * 1.398 i.e. 0.203. 

The advantage of TF-IDF can be taken by running a TF-

IDF calculation on every word of the corpus and choosing the 
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terms with higher TF-IDF values. Correspondingly these 

selected terms can be again be aligned according to their 

search volumes on the web and lastly selecting the terms with 

greater search volumes as they make more sense according to 

the users. One downside of TF-IDF vectorization is that it also 

produces a high dimensional representation that may not 

confine the actual semantic relationship between words.  

V. CO-OCCURRENCE VECTORIZATION 

As the name suggests, it is a matrix that suggests how 

some words tend to occur jointly and are probably used in the 

similar context. It is a colossal matrix (even bigger than the 

one-hot encoding matrix) that is comparable in size to the 

whole corpus and uses positive whole numbers to mark the 

presence of co-occurrence of two words and integer value “0” 

to mark absence of co-incidence. If some terms are coming 
multiple times together, the presence is denoted by that 

frequency[20]. To check the co-occurrence of words, a context 

window size must be decided, which indicates how many 

words before and after must be scanned for a particular term. 

To explain this, let’s take an example: 

Corpus: “He is the best dancer. He is very famous. He is 

smart”. This corpus has 3 sentences and let’s assumes the size 

of context window is 2 i.e. each word will be scanned 2 words 

both before and after a given word. The co-occurrence matrix 

for the above corpus should be the following: 

Table II. Example of Co-Occurrence Matrix 

 H

e 

i

s 

th

e 

bes

t 

dance

r 

ver

y 

famou

s 

smar

t 

He 0 3 1 1 1 1 1 1 

is 3 0 1 1 1 1 2 1 

the 1 1 0 1 1 0 0 0 

best 1 1 1 0 1 0 0 0 

dancer 1 1 1 1 0 0 0 0 

very 1 1 0 0 0 0 1 0 

famou

s 
1 2 0 0 0 1 0 0 

smart 1 1 0 0 0 0 0 0 

The explanation is quite easy; first of all every word in the 

given corpus does not occur with itself, hence the cell at 

intersection of word with itself is marked “0”, like “He” does 

not occur with “He” in any sentence of vocabulary. The 
occurrence of “He” and “is” is coming in all three sentence, 

hence marked “3” for intersection of “He-is” and also for “is-

He”. Similarly, the occurrence of “is-famous” is stated as “2” 

coz in 2nd sentence, “famous” term is coming in context 

window of “is” of 2nd sentence as per forward propagation and 

also comes in context window of “is” of 3rd sentence 

according to the backward scanning. Also, check some words 

do not happen together like the pair of “famous-smart” as the 

context window is only 2 words long, hence they are marked 

“0” for both “famous-smart” and “smart-famous”. 

 
Figure 4: The Co-Occurrence for “is-famous” word pair 

Although the biggest benefit of Co-occurrence 

vectorization over Count vectorization and TF-IDF is that is 

preserves the semantic relationship between terms and also 

comparatively faster[21]. However, the focal drawback is its 

enormous size; but the modern tools like Hadoop can handle 

this by factorizing the matrix.  

VI. CONTINUOUS BAG OF WORDS (CBOW) MODEL 
Bag of Words (BoW) can be defined as the means of 

mining features from text to employ in machine learning or 
deep learning algorithms. BoW basically involves two 
entities: a dictionary of recognized words and a way to 
quantifythe presence of these words. CBoW model is one of 
the fundamental approaches based on BoW and used for word 
embeddings. It is generally recognized as a learning model 
that predicts a term by its context and that context maybe a 
single or multiple words (usual case). Henceforth for every 
word, ‘n’ words before and after it is considered to check the 
semantic association among words. It is based on neural 
networks with hidden layer/s and works on a simple norm that 
milieu of a word/phrase can be branded by the neighboring 
words[22].The dimension of the hidden layer and the output 
layer should remain same, but the input layer dimensions can 
be altered along with the activation function of the hidden 
layer. Figure 5 shows an example of CBOW model: 

 
Figure 5: Prediction using CBOW Model[23] 

As depicted in the above example the surrounding words: 
“the”, “cat”, “off”, “the” and “chair” are able to predict the 
central word “jumped” to complete the sentence. Here the 
term “window” refers to the context window that determines 
how many words afore and later a given term. There are 
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several advantages of CBoW like chiefly diminutive memory 
usage and being probabilistic in nature comparative to the 
traditional frequency-based embeddings. The main 
disadvantages of CBoW are sometimes average prediction for 
a word. It happens due to the hidden layer’s output which is 
the average of word vectors related to context terms at the 
input layer[24]. For example, “Windows” can be both a 
graphical operating system by Microsoft or opening in a wall.  

VII. SKIP-GRAM MODEL 
The skip gram model or continuous skip gram model is an 

alternate to the CBoW model with a small twist. Instead of 
using the surrounding words to unearth the middle word, it 
learns an embedding by predicting the surrounding words 
with the help of a given central word.  It can be said that skip 
gram architecture is exact reverse of CBoW but keeps the 
topology same. Nonetheless it can be imagined that skip gram 
is analogous to 1-context architecture of CBoW[25].  

 
Figure 6: Prediction using Skip-Gram Model[23] 

As shown above, skip gram approach predicts the 

neighboring words using the current word i.e. each central 

word is given input to a classifier with constant projection 
layer and predicts the nearbywords within a particular range 

previous to and next to the current word. The training purpose 

is to learn word vector illustration that is superior at 

forecasting the close by words. The most important plus of 

using skip-gram is capturing multiple semantics for each 

word, like foretelling both graphical operating system by 

Microsoft and opening in a wall for “Windows”. Another 

chief boon of skip gram model is its association with negative 

sampling, which outperforms its other competitors[26]. 

VIII. WORD2VEC 

Word2Vec can be defined as the Google’s magic wand for 
word embedding, which has made the process easy and 

simplified. Word2Vec is based on the amalgamation of CBoW 

and Skip-Gram models (the shallow neural network 

architectures) to map word(s) to the target term(s).  It can also 

be stated as the successor of the neural probabilistic model, 

which acquires embedding by attaining classification or 

modelling. Word2Vec was published in a research paper by 

Tomas Mikolov, Kai Chen, Greg Corrado & Jeffrey Dean (all 

Google employees) in September 2013[27].It is word 

embedding powerhouse by Google that trained on circa 100 

billion words taken from Google News Data with nearly 300 

dimensions. Now Word2Vec can be said as the state-of-art 

word embedding standard as it produces generalized results 

and that too with lesser dimensions. It is based on simple 
working principle that using trivial two-layer neural network 

for training of rebuilding linguistic backgrounds of the 

word[28]. The input of Word2Vec is usually an enormous text 

corpus and produces “vector space” of huge dimensions, 

which means assigning a corresponding vector in the space to 

each exclusive word. At that moment, words of corpus that 

share mutual context are located adjacent to the each other in 

vector space and are hence called word vectors[29]. The 

metric used here is “cosine similarity” or “Euclidean 

Distance” which discovers the likeness between myriad words 

or documents; the smaller the cosine angle, closer the 

documents. Cosine similarity can be defined as the amount of 
cosine of the angle between two non-zero vectors in a three-

dimensional space[30].   

 
Figure 7: Example of words in vector space[31] 

As Word2Vec works on two alike yet opposite 

architectures, which both have their own pros and cons. On 

one hand, CBoW is way quicker and produces enhanced word 

presentations for more recurrent terms. On the other hand, 

Skip gram is better suited for rare words and can also work 

fine with trivial vocabulary[32]. A major parameter of 

Word2Vec is sub-sampling i.e. eliminating high frequency 

words above a definite threshold maybe subsampled to 

upsurge the training swiftness. Another imperative factor is 

dimensionality whose ideal value lies between 100 and 1000 

because word embedding quality escalates with increased 

dimensionality. However the most prominent parameter for 
Word2Vec is its training algorithm: hierarchical softmax 

and/or negative sampling being the most eminent ones. The 

hierarchical softmax technique uses a Huffman tree to 

diminish calculation and boost the conditional log-likelihood, 

thus making it work superior for the rare words. Besides, the 

negative sampling uses the sampled negative instances and 
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minimalize their log-likelihood for attaining better results for 

commonly used words and vectors with lower dimensions[33].  

As stated above, negative sampling with continuous skip-

gram is far superior method for embedding, but how does it 

work? The answer is quite simple: instead of just using 

positive samples, add some negative samples too. As the 

ultimate aim of every embedding algorithm is to better predict 
the context words according to a particular word, hence each 

model takes input and output words and its output score 

forecasts whether these words are neighbors or not in the 

vector space. If the words are neighbor, the target is set as “1”, 

else it is given the value “0”. A desirable model may generate 

100% correctness by giving all 1s but will be unable to learn 

and generalize. Hence, the negative samples must be added to 

the dataset for 0s i.e. randomly designated words that are not 

neighbors as the output terms.  The negative sampling 

increases the efficiency by slightly decreasing the speed, thus 

maximizing the result. This can be easily understood by an 

example: if a bag contains 6 red balls, 12 white balls and 2 
black balls, then simple sampling has probability of picking 

red balls is 6/20 or 0.3, black ball is 0.1 and white ball is 0.6. 

The main shortcoming here is that high frequency data will be 

picked (because of higher probability), which typically is of 

lesser value. Hence adjusted sampling is done i.e. reducing 

probability by 3/4th rule, hence reducing white ball probability 

to 0.45 and probabilities of red balls and black balls will be 

enhanced. The appropriate number of negative samples varies 

between 5 and 20, although 2 to 5 negative samples are also 

sufficient[34].  

IX. GLOVE 
GloVe stands for Global Vectors for word representations, 

which can be stated as the extension of Word2Vec, but 
yielding even better results.It was developed by Jeffrey 
Pennington, Richard Socher and Christopher D. Manning in 
2014 as an unsupervised learning algorithm for gaining vector 
illustration for words at Stanford[35]. The chief addition to 
the arsenal here is the inclusion of global statistics and 
exclusion of window feature for local context to generate 
improved embeddings. The training here is done on the non-
zero values of the global word co-occurrence matrix, that 
depicts how rarely or frequently two terms co-occur. The 
representations also show fascinating linear substructures of 
word vector space.  

 
Figure 8: GloVe showing comparative-superlative terms[36] 

These pre-trained word vectors can be downloaded online 
and it comes in different shapes and sizes. The smallest one 
contains 6 billion tokens with 50, 100, 200 or 300 dimensions, 
which is 822 MB in size. The subsequent file contains 42 
billion tokens with 300 dimensions of 1.75 GB size. The 
largest file is trained on 840 billion tokens with 300 
dimensions and of size 2.03 GB size. Additional feather in its 
cap is a pre-trained file for Twitter data that contains 2 billion 
tokens of 25, 50, 100 & 200 dimensions with 1.42 GB size.  

X. FASTTEXT 
fastText by Facebook is the free and open source yet 

lightweight word embedding library to create supervised or 
unsupervised algorithms that are generally used for text 
representation and classification. fastText is based on two 
research papers written by Tomas Mikolov et. al. in 2016 and 
now it offers three models with 1 or 2 million word vectors 
and 300 dimensions[37]. The maximum model size of 
fastText is closely 8.2 GB in size.   

The chief features of fastText are its pre-trained models for 
nearly 294 languages, working with general hardware with 
ease and even compatibility to work on cellphones[38]. 
However, a striking characteristic of fastText is its ability to 
yield vectors for even the unknown vocabulary, misspelled 
words, two words merged into one another. This is achieved 
by splitting entire terms into a bag of n-gram letters and these 
subwords can be merged independently to create new words, 
as shown in figure 8. The best results of fastText can be 
achieved by using skip-gram architecture in conjunction with 
negative sampling. As explained in the previous section, 
negative samples are random samples from the corpora and 
the sub-words will be used as positive samples. Also, fastText 
does not support GPU till now and works only on the 
CPU[39].  
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Figure 9: Learning word embedding through subwords[17] 

XI. POINCARE EMBEDDINGS 
Poincare Embeddings by Facebook is a novel research idea 

given by Maximilian Nickel and Douwe Kiela in 2017 that 
focuses on finding the hierarchical word representations[40].  
To trace any term’s hierarchical properties, Poincare uses a 
hyperbolic geometry, where the distance is used to express 
likeness and associations. The hyperbolic space is preferred 
over the Euclidean distance because it is unremitting form of a 
tree and hence superior to comprehend the organizational 
property of learning. Due to the above elements, the 
embeddings generated by hyperbolic space are more 
generalized and better for illustration. The key aspect here is 
that reduced dimensions are used here to create the 
hierarchical information, which was proved when they 
generated WordNet[41].On the downside, Poincare 
embeddings are less proficient for modelling the perplex 
patterns due to their dimension limitation.  

 
Figure 10: Poincare Embeddings’ WordNet[41] 

X. ELMO 

Embeddings for Language Models (ELMo) is designed to 
overcome the problems encountered by the Word2Vec and 
GloVe embeddings. It is defined as the deep contextualized 
term representation that looks at the whole sentence, then try 
to gain knowledge about its syntax and semantics afore 
allocating embeddings to each word[42]. Similar to fastText, 
ELMo also concentrates on character level, thus exploiting on 
subwords and gaining the ability to even identifying the 
previously unidentified words. ELMo is based on bi-
directional Long Short-Term Memory(deep neural 
networks)also called Deep Bi-directional Language Model 
(biLM) that provides enhanced understanding of language and 
modelling that can envisage succeeding word in a sentence. A 
major disadvantage of ELMo is that its final yield is a blend of 
its inner layers’ output[43].  

XI. PROBABILISTIC FASTTEXT 

It is the most novel type of word embedding introduced by 
Ben Athiwaratkun, Andrew Gordon Wilson and Amina 
Anandkumar in June 2018[44]. It is named after fastText and 
works similar too but with additional responsibilities like 
capturing ambiguous information, getting subwords 
organization and most importantly the words that are spelled 
the same but have diverse meanings. For example: the word 
“fair” could mean a festival or unbiased or even appearance of 
a person.Hence to understand in which context any particular 
term is being, Probabilistic fastText uses Gaussian mixture 
models are used for word representation instead of 
vectors[45]. Moreover, Probabilistic fastText outclasses the 
traditional dictionary-based embeddings and fastText in 
performance both for English language and other foreign 
languages.  

XII. CREATING OWN EMBEDDINGS 

It is also possible for a novel or expert data scientist to 

generate his/ her own word embeddings in case he/ she is not 

satisfied with the pre-trained embeddings available like 

GloVe, ELMo or fastText, etc. The procedure is quite simple, 

which starts with building a vocabulary list of all the 

distinctive words and their frequency. Then, a dictionary 
should be prepared, where each distinct word will be matched 

with a unique id. Then, a model must be defined by 

specifying myriad parameters like number of dimensions, 

training algorithm, least count of words to consider while 

model training and window (utmost space between target 

word and its close by words). An imperative point of 

consideration here is that default number of all these 

parameters is also set. Subsequently, this model can be saved 

either in ASCII or binary format for future use and finally it 

can be supply this data in the neural networks to produce 

word embeddings[46].  

XIII. CONCLUSION 
This research paper discusses the most vigorous subject 

matter in the domain of sentiment analysis and that is word 
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embeddings.  In comparison to the conventional embeddings 
available earlier, some novel embedding methods have 
surfaced and taken the world with storm.This has caused 
havoc for the beginners or new-fangled scholarswho are trying 
to learn and finding which out of plethora of word embedding 
to use in which situation. This paper is intended to simplify 
the chaos and present each available embedding technique in 
as simple way possible describing in detail the working 
principle, benefits and detriments and also ability to work on 
numerous natural languages.Finally, it can be concluded that 
no word embedding method can be confirmed as the best 
method of all because their performances vary with the 
dataset; thus one behave well with a dataset and may yield 
poor results for another.  
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