
IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 22

A PRIMER ON WORD EMBEDDING

1Satvika, 2Dr. Vikas Thada, 3Dr. Jaswinder Singh
1PhD Scholar, CSE Deptt., Amity University, Gurugram, Haryana, India, Satvika16oct@gmail.com

2Assistant Professor, CSE Deptt., Guru Jambhehwar University, Hisar, Haryana, India, vthada@ggn.amity.edu

3Associate Professor, CSE Deptt., Amity University, Gurugram, Haryana, India, jaswinder_singh_2k@rediffmail.com

Abstract—The current research on the topic Machine Learning

and especially the domain of Natural Language Processing has
gained much popularity in the modern era.One such framework for
attaining NLP tasks is word embedding, which represent data as
vectors i.e. real numbers rather than words of natural language
because neural networks do not understand them naturally. Word
embeddings try to capture both syntactic and semantic information of
words and capture relationships according to context and

morphology. This paper reviews each word embedding technique
available in the contemporary world ranging from traditional
embeddings based on frequency of terms to pre-trained embeddings
like prediction-based embeddings. The goal of this paper is to present
the myriad methods available for word embedding, classify their
working patterns, also identifying their pros and cons for working on
text classification and detect their hegemony over the traditional
methods of NLP.

Keywords—CBoW; Deep Learning; fastText; GloVe; Machine
Learning; Natural Language Processing(NLP), Skip-Gram; Word
Embeddings.

I. INTRODUCTION

The modern world is called the “data age” because data is
the new tool or weapon for achieving laurels in the business or
corporate era. The correct and updated data (or information) is
the most prominent thing required by the commercial houses
either small or big to gain a candid advantage over its
competitors. Nowadays, more and more companies are
investing capital (human resource, money and time) in data
collection, processing and analytics. This process involves
enormous data harvesting or warehousing from numerous
sources whether social media or traditional methods, and then
processing this whole data so that data collected from various
sources is in a common format. It is quite vital as unstructured
data is estimated to be approximately 70% of the total data
accumulated; which must be brought to same format to apply
mathematical or statistical functions.

These functions help in analyzing the data and discovering
the hidden patterns or the information. By doing so, the
companies get a real insight on customer behavior, buying
pattern and potential customer identification for peculiar
products and services; which is mandatory in the
contemporary world to boost the productivity and revenue.
There are myriad mechanical or algorithmic paradigms
available for customers’ opinion mining such as Rule-based

approach, Machine Learning and Deep Learning, etc. which
try to learn the exact sentiments behind customers’ reviews
and predict them accurately[1].

Rule-based approaches are based on defining a bunch of
rules for identifying the intensity and emotions that a word
expresses[2].These rules must be logical, intuitive for a
particular domain under consideration and should also take
into account the sarcasm and satire. The chief concern in rule-
based approaches is their static behavior i.e. the rules are static
and do not change rapidly with time, which make them
obsolete soon. However, it must be considered that data is too
dynamic these days and hidden patterns contained in data
change quickly also[3]. Another imperative hindrance in rule-
based systems is the huge amount of hard work and testing
involved, which makes it sluggish. Also, rule-based systems
give excellent results in a narrow domain, but behave poorly
when it comes to generalization[4]. Due to these quandaries,
the rule-based approach got obsolescent and machine learning
algorithms surfaced which is used widely today for data
analytics.

Machine learning is the state-of-art branch of Artificial
Intelligence, which uses statistical models and algorithms to
attain a precise task using inferences and patterns present in
the data itself rather than explicit directions from humans[5].
The machines (or computers in this case) learn by gaining
knowledge from past know-hows and then try to practice it in
the unknown but related domains. There are copious
categories of machine learning available chiefly supervised,
unsupervised, reinforcement, semi-supervised, self-supervised,
multi-instance, inductive, deductive, transductive learning, etc,
which are used specifically for particular tasks.

The machine learning approach varies its underlying
algorithm according to the varying data and hence more
dynamic than rule-based approach[6]. The usual problems
solved by machine learning are classification, clustering,
dimensionality reduction, anomaly detection, etc. and some of
the noteworthy machine learning algorithms to handle these
hitches are Naïve Bayes, Support Vector Machine, K-Nearest
Neighbor, Decision Trees, etc. Overall, it can be said that
machine learning is very adaptive which learns patterns from
data and therefore can be applied to plethora of applications
like natural language processing, spam detection, sentiment

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 23

analysis, recommendation systems, genre (multi-class)
classification, stock prediction, etc[7].

Fig. 1: How machine learning works[8]

Last but not the least is the Deep learning methodology,
which is nothing but group of algorithms and models that
entailmanifold processing layers. Deep learning is the newest
branch of Artificial Intelligence which uses artificial neural
networks (similar to neural network present in human brain)
for the process of learning and predicting[9]. Therefore, it can
be defined as the science of making machines intelligent my
making them learn by example, just like the humans do. It is
usually an unsupervised kind of learning which can absorb
information from either structured or even unstructured data;
hence it is practically more useful than its counterparts.

There are plenty of applications of deep learning like
natural language processing, self-driving cars, healthcare,
financial fraud detection, fake news detection, virtual
assistants (like Siri, Cortana & Jarvis) etc. The next section
discusses the need of word embeddings. Section III details
about the numerous types of word embeddings. Section IV
gives an insight on the traditional word embeddings and
segment V deliberates the pre-trained word embeddings.
Finally, the next section specifies the conclusion for the
article.

II. WORD EMBEDDING AND ITS NEED

Machine learning as well as Deep learning basically uses

the neural networks and its myriad variations like Convolution

Neural Networks, Recurrent Neural Networks, etc. to handle

the perplex problems especially in the domain of text

processing. Nevertheless, the key point here is that the neural

networks cannot directly use the natural languages like English

or Hindi because neural nets do not understand the words or

phrases; instead they use numerical data. This is where word

embedding comes into play i.e. represent the textual

information from languages into statistics.

In short, word embeddings can be explained as the

numerical representation of a documenttexts’ semantic

meaning[10]. These vectors actually provide the relation

between various words or phrases of the documenti.e. the
words having similar meaning have closer vector values,

which establish their closeness in the linguistics. For example,

the word “male” is proximate to “King” and “Boy” and quite

far from “Queen” and “Princess”, as shown in figure 2.

Figure 2: Example of Word Embeddings[11]

It is essential to understand that word embedding is not the

mere translation of texts into numbers rather it conveys the
semiology meanings of the words. The distance between

vectors represent the similarity between myriad words[12]. In

brief, it can be concluded that computers are incapable of

understanding natural language’s words and that’s why word

embeddings are required. Also, encoding phrases into numeric

form can make mathematical functions especially matrix

operations successfully operate for NLP tasks.

Word embeddings can be categorized broadly into two
categories namely Frequency-based and Prediction-based. As
the name suggests, Frequency-based embeddings take into
account the frequency or number of times a word occurs in the
document to find its relevance. It is also called count-based
embeddings and its principal point is to give weights
according to the occurrence and also the

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 24

context[13].Frequency based word embeddings can again be
classified into: Count Vector, TF-IDF Vector and Co-
Occurrence. The Prediction-based embeddings fundamentally
consists of two major approaches: Continuous Bag-of-Words
(CBOW) and Skip-Gram that come together to form the
Word2Vec which is the prominent state-of-art model of word
embedding. Each of the above will be discussed in detail in
the following sections.

III. COUNT-VECTORIZATION

Count Vectorizing or One-Hot Encoding (OHE) is the

most basic word embedding that works on a simple binary

principle and produces a high-dimensional sparse matrix.

Firstly it creates a bag-of-words (vocabulary) from all the

given text or corpus, which is defined as the assemblage of

similar text. Secondly, it counts the occurrence of each word

in the document existing in the corpus. The final output of

count vectorizing is a sparse matrix with dimensions D*T;
where D denotes number of documents and T signifies number

of dissimilar words in the vocabulary[14]. This can be

understood by the following example:

Document 1 (D1): “The dog ate the cat”.

Document 2 (D2): “The lion can eat a cat”.

As displayed above, there are two documents i.e. D=2 and

total 8different words thus making T=8 in the corpus: {“the”,

“dog”, “ate”, “cat”, “lion”, “can”, “eat”, “a” }. Hence, count

vectorizing encoding for the above corpus should be:

Table 1: Example of Count Vectorization

 the dog ate cat lion can eat a

D1 2 1 1 1 0 0 0 0

D2 1 0 0 1 1 1 1 1

The matrix generated is self-explanatory: if a word appears

in a corresponding document, it is given the value “1”, else

given “0”. If a word appears multiple times, it can be given

that frequency; just like “the” word is coming two times in the

D1, hence value of “the” is marked as 2 for D1. As the words
“lion”, “can”, “eat” and “a” are absent in D1, hence they are

assigned “0” for D1. Similarly, the words “dog” and “ate” are

not given in D2 and marked “0”.Each cell in the matrix

corresponds to one document and one precise word in the

corpus. Usually a corpus contains 1000s of sentences with 10s

of words, thus producing a lot of words which are not

occurring in most of the documents. Thus the topmost pickle

in this embedding is the occurrence of cells with loads of 0’s,

hence called the sparsity matrix with high dimensions.

Nonetheless, these dimensions or features can be diminished,

so that visualization is possible because of lower

dimensions[15]. One way of doing so is to eliminate

commonly occurring words also called “stopwords” from the

corpus. This whole process of generating table is called

tokenization i.e. identifying all the individual words present in

the corpus.

IV. TF-IDF VECTORIZATION

The full abbreviation of TF-IDF is “Term Frequency –

Inverse Document Frequency”. The phrase “Term Frequency”
refers to the incidence of a term in a document divided by the

entire amount of documents; while the term “Inverse

Document Frequency” denotes the logarithmic value (to the

base 10) of whole number of documents divided upon the

magnitude of documents a specific term is appearing in.

Figure 3: TF-IDF values for words according to their frequency[17]

The product of TF and IDF values for a word is known as

its TF-IDF weight; its higher value signify rarity of a term and

vice-versa[16]. TF-IDF vectorization is the embedding which
removes the problem in count vectorizing which simply

records the occurrence of a particular word in the document

irrespective of its significance[18]. Actually the commonly

used words like “a”, “an”, “the”, “this”, “that”, “is”, “am”,

“are”, etc. are most likely to appear in the documents and their

frequency does not mean they are strongly imperative, instead

they are least important. Hence, TF-IDF tries to eliminate

these frequent words by assigning them lower weights and try

to include more noteworthy terms by empowering them with

more weight values[19]. For example, when a 1000-word

document on cryptography comprises the word “cipher” 145

times, the TF value for this word is 145/1000 i.e. 0.145. Also
consider if the term “cipher” is contained in 40 documents out

of total 1000 documents in the corpus, then IDF value will be

calculated by formula log10 (1000/40) → log10(25) → 1.398.

Having calculated both TF and IDF values, the final TF-IDF

value can be deliberated by their multiplication:

TF-IDF for word “cipher” is 0.145 * 1.398 i.e. 0.203.

The advantage of TF-IDF can be taken by running a TF-

IDF calculation on every word of the corpus and choosing the

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 25

terms with higher TF-IDF values. Correspondingly these

selected terms can be again be aligned according to their

search volumes on the web and lastly selecting the terms with

greater search volumes as they make more sense according to

the users. One downside of TF-IDF vectorization is that it also

produces a high dimensional representation that may not

confine the actual semantic relationship between words.

V. CO-OCCURRENCE VECTORIZATION

As the name suggests, it is a matrix that suggests how

some words tend to occur jointly and are probably used in the

similar context. It is a colossal matrix (even bigger than the

one-hot encoding matrix) that is comparable in size to the

whole corpus and uses positive whole numbers to mark the

presence of co-occurrence of two words and integer value “0”

to mark absence of co-incidence. If some terms are coming
multiple times together, the presence is denoted by that

frequency[20]. To check the co-occurrence of words, a context

window size must be decided, which indicates how many

words before and after must be scanned for a particular term.

To explain this, let’s take an example:

Corpus: “He is the best dancer. He is very famous. He is

smart”. This corpus has 3 sentences and let’s assumes the size

of context window is 2 i.e. each word will be scanned 2 words

both before and after a given word. The co-occurrence matrix

for the above corpus should be the following:

Table II. Example of Co-Occurrence Matrix

 H

e

i

s

th

e

bes

t

dance

r

ver

y

famou

s

smar

t

He 0 3 1 1 1 1 1 1

is 3 0 1 1 1 1 2 1

the 1 1 0 1 1 0 0 0

best 1 1 1 0 1 0 0 0

dancer 1 1 1 1 0 0 0 0

very 1 1 0 0 0 0 1 0

famou

s
1 2 0 0 0 1 0 0

smart 1 1 0 0 0 0 0 0

The explanation is quite easy; first of all every word in the

given corpus does not occur with itself, hence the cell at

intersection of word with itself is marked “0”, like “He” does

not occur with “He” in any sentence of vocabulary. The
occurrence of “He” and “is” is coming in all three sentence,

hence marked “3” for intersection of “He-is” and also for “is-

He”. Similarly, the occurrence of “is-famous” is stated as “2”

coz in 2nd sentence, “famous” term is coming in context

window of “is” of 2nd sentence as per forward propagation and

also comes in context window of “is” of 3rd sentence

according to the backward scanning. Also, check some words

do not happen together like the pair of “famous-smart” as the

context window is only 2 words long, hence they are marked

“0” for both “famous-smart” and “smart-famous”.

Figure 4: The Co-Occurrence for “is-famous” word pair

Although the biggest benefit of Co-occurrence

vectorization over Count vectorization and TF-IDF is that is

preserves the semantic relationship between terms and also

comparatively faster[21]. However, the focal drawback is its

enormous size; but the modern tools like Hadoop can handle

this by factorizing the matrix.

VI. CONTINUOUS BAG OF WORDS (CBOW) MODEL
Bag of Words (BoW) can be defined as the means of

mining features from text to employ in machine learning or
deep learning algorithms. BoW basically involves two
entities: a dictionary of recognized words and a way to
quantifythe presence of these words. CBoW model is one of
the fundamental approaches based on BoW and used for word
embeddings. It is generally recognized as a learning model
that predicts a term by its context and that context maybe a
single or multiple words (usual case). Henceforth for every
word, ‘n’ words before and after it is considered to check the
semantic association among words. It is based on neural
networks with hidden layer/s and works on a simple norm that
milieu of a word/phrase can be branded by the neighboring
words[22].The dimension of the hidden layer and the output
layer should remain same, but the input layer dimensions can
be altered along with the activation function of the hidden
layer. Figure 5 shows an example of CBOW model:

Figure 5: Prediction using CBOW Model[23]

As depicted in the above example the surrounding words:
“the”, “cat”, “off”, “the” and “chair” are able to predict the
central word “jumped” to complete the sentence. Here the
term “window” refers to the context window that determines
how many words afore and later a given term. There are

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 26

several advantages of CBoW like chiefly diminutive memory
usage and being probabilistic in nature comparative to the
traditional frequency-based embeddings. The main
disadvantages of CBoW are sometimes average prediction for
a word. It happens due to the hidden layer’s output which is
the average of word vectors related to context terms at the
input layer[24]. For example, “Windows” can be both a
graphical operating system by Microsoft or opening in a wall.

VII. SKIP-GRAM MODEL
The skip gram model or continuous skip gram model is an

alternate to the CBoW model with a small twist. Instead of
using the surrounding words to unearth the middle word, it
learns an embedding by predicting the surrounding words
with the help of a given central word. It can be said that skip
gram architecture is exact reverse of CBoW but keeps the
topology same. Nonetheless it can be imagined that skip gram
is analogous to 1-context architecture of CBoW[25].

Figure 6: Prediction using Skip-Gram Model[23]

As shown above, skip gram approach predicts the

neighboring words using the current word i.e. each central

word is given input to a classifier with constant projection
layer and predicts the nearbywords within a particular range

previous to and next to the current word. The training purpose

is to learn word vector illustration that is superior at

forecasting the close by words. The most important plus of

using skip-gram is capturing multiple semantics for each

word, like foretelling both graphical operating system by

Microsoft and opening in a wall for “Windows”. Another

chief boon of skip gram model is its association with negative

sampling, which outperforms its other competitors[26].

VIII. WORD2VEC

Word2Vec can be defined as the Google’s magic wand for
word embedding, which has made the process easy and

simplified. Word2Vec is based on the amalgamation of CBoW

and Skip-Gram models (the shallow neural network

architectures) to map word(s) to the target term(s). It can also

be stated as the successor of the neural probabilistic model,

which acquires embedding by attaining classification or

modelling. Word2Vec was published in a research paper by

Tomas Mikolov, Kai Chen, Greg Corrado & Jeffrey Dean (all

Google employees) in September 2013[27].It is word

embedding powerhouse by Google that trained on circa 100

billion words taken from Google News Data with nearly 300

dimensions. Now Word2Vec can be said as the state-of-art

word embedding standard as it produces generalized results

and that too with lesser dimensions. It is based on simple
working principle that using trivial two-layer neural network

for training of rebuilding linguistic backgrounds of the

word[28]. The input of Word2Vec is usually an enormous text

corpus and produces “vector space” of huge dimensions,

which means assigning a corresponding vector in the space to

each exclusive word. At that moment, words of corpus that

share mutual context are located adjacent to the each other in

vector space and are hence called word vectors[29]. The

metric used here is “cosine similarity” or “Euclidean

Distance” which discovers the likeness between myriad words

or documents; the smaller the cosine angle, closer the

documents. Cosine similarity can be defined as the amount of
cosine of the angle between two non-zero vectors in a three-

dimensional space[30].

Figure 7: Example of words in vector space[31]

As Word2Vec works on two alike yet opposite

architectures, which both have their own pros and cons. On

one hand, CBoW is way quicker and produces enhanced word

presentations for more recurrent terms. On the other hand,

Skip gram is better suited for rare words and can also work

fine with trivial vocabulary[32]. A major parameter of

Word2Vec is sub-sampling i.e. eliminating high frequency

words above a definite threshold maybe subsampled to

upsurge the training swiftness. Another imperative factor is

dimensionality whose ideal value lies between 100 and 1000

because word embedding quality escalates with increased

dimensionality. However the most prominent parameter for
Word2Vec is its training algorithm: hierarchical softmax

and/or negative sampling being the most eminent ones. The

hierarchical softmax technique uses a Huffman tree to

diminish calculation and boost the conditional log-likelihood,

thus making it work superior for the rare words. Besides, the

negative sampling uses the sampled negative instances and

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 27

minimalize their log-likelihood for attaining better results for

commonly used words and vectors with lower dimensions[33].

As stated above, negative sampling with continuous skip-

gram is far superior method for embedding, but how does it

work? The answer is quite simple: instead of just using

positive samples, add some negative samples too. As the

ultimate aim of every embedding algorithm is to better predict
the context words according to a particular word, hence each

model takes input and output words and its output score

forecasts whether these words are neighbors or not in the

vector space. If the words are neighbor, the target is set as “1”,

else it is given the value “0”. A desirable model may generate

100% correctness by giving all 1s but will be unable to learn

and generalize. Hence, the negative samples must be added to

the dataset for 0s i.e. randomly designated words that are not

neighbors as the output terms. The negative sampling

increases the efficiency by slightly decreasing the speed, thus

maximizing the result. This can be easily understood by an

example: if a bag contains 6 red balls, 12 white balls and 2
black balls, then simple sampling has probability of picking

red balls is 6/20 or 0.3, black ball is 0.1 and white ball is 0.6.

The main shortcoming here is that high frequency data will be

picked (because of higher probability), which typically is of

lesser value. Hence adjusted sampling is done i.e. reducing

probability by 3/4th rule, hence reducing white ball probability

to 0.45 and probabilities of red balls and black balls will be

enhanced. The appropriate number of negative samples varies

between 5 and 20, although 2 to 5 negative samples are also

sufficient[34].

IX. GLOVE
GloVe stands for Global Vectors for word representations,

which can be stated as the extension of Word2Vec, but
yielding even better results.It was developed by Jeffrey
Pennington, Richard Socher and Christopher D. Manning in
2014 as an unsupervised learning algorithm for gaining vector
illustration for words at Stanford[35]. The chief addition to
the arsenal here is the inclusion of global statistics and
exclusion of window feature for local context to generate
improved embeddings. The training here is done on the non-
zero values of the global word co-occurrence matrix, that
depicts how rarely or frequently two terms co-occur. The
representations also show fascinating linear substructures of
word vector space.

Figure 8: GloVe showing comparative-superlative terms[36]

These pre-trained word vectors can be downloaded online
and it comes in different shapes and sizes. The smallest one
contains 6 billion tokens with 50, 100, 200 or 300 dimensions,
which is 822 MB in size. The subsequent file contains 42
billion tokens with 300 dimensions of 1.75 GB size. The
largest file is trained on 840 billion tokens with 300
dimensions and of size 2.03 GB size. Additional feather in its
cap is a pre-trained file for Twitter data that contains 2 billion
tokens of 25, 50, 100 & 200 dimensions with 1.42 GB size.

X. FASTTEXT
fastText by Facebook is the free and open source yet

lightweight word embedding library to create supervised or
unsupervised algorithms that are generally used for text
representation and classification. fastText is based on two
research papers written by Tomas Mikolov et. al. in 2016 and
now it offers three models with 1 or 2 million word vectors
and 300 dimensions[37]. The maximum model size of
fastText is closely 8.2 GB in size.

The chief features of fastText are its pre-trained models for
nearly 294 languages, working with general hardware with
ease and even compatibility to work on cellphones[38].
However, a striking characteristic of fastText is its ability to
yield vectors for even the unknown vocabulary, misspelled
words, two words merged into one another. This is achieved
by splitting entire terms into a bag of n-gram letters and these
subwords can be merged independently to create new words,
as shown in figure 8. The best results of fastText can be
achieved by using skip-gram architecture in conjunction with
negative sampling. As explained in the previous section,
negative samples are random samples from the corpora and
the sub-words will be used as positive samples. Also, fastText
does not support GPU till now and works only on the
CPU[39].

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28

Figure 9: Learning word embedding through subwords[17]

XI. POINCARE EMBEDDINGS
Poincare Embeddings by Facebook is a novel research idea

given by Maximilian Nickel and Douwe Kiela in 2017 that
focuses on finding the hierarchical word representations[40].
To trace any term’s hierarchical properties, Poincare uses a
hyperbolic geometry, where the distance is used to express
likeness and associations. The hyperbolic space is preferred
over the Euclidean distance because it is unremitting form of a
tree and hence superior to comprehend the organizational
property of learning. Due to the above elements, the
embeddings generated by hyperbolic space are more
generalized and better for illustration. The key aspect here is
that reduced dimensions are used here to create the
hierarchical information, which was proved when they
generated WordNet[41].On the downside, Poincare
embeddings are less proficient for modelling the perplex
patterns due to their dimension limitation.

Figure 10: Poincare Embeddings’ WordNet[41]

X. ELMO

Embeddings for Language Models (ELMo) is designed to
overcome the problems encountered by the Word2Vec and
GloVe embeddings. It is defined as the deep contextualized
term representation that looks at the whole sentence, then try
to gain knowledge about its syntax and semantics afore
allocating embeddings to each word[42]. Similar to fastText,
ELMo also concentrates on character level, thus exploiting on
subwords and gaining the ability to even identifying the
previously unidentified words. ELMo is based on bi-
directional Long Short-Term Memory(deep neural
networks)also called Deep Bi-directional Language Model
(biLM) that provides enhanced understanding of language and
modelling that can envisage succeeding word in a sentence. A
major disadvantage of ELMo is that its final yield is a blend of
its inner layers’ output[43].

XI. PROBABILISTIC FASTTEXT

It is the most novel type of word embedding introduced by
Ben Athiwaratkun, Andrew Gordon Wilson and Amina
Anandkumar in June 2018[44]. It is named after fastText and
works similar too but with additional responsibilities like
capturing ambiguous information, getting subwords
organization and most importantly the words that are spelled
the same but have diverse meanings. For example: the word
“fair” could mean a festival or unbiased or even appearance of
a person.Hence to understand in which context any particular
term is being, Probabilistic fastText uses Gaussian mixture
models are used for word representation instead of
vectors[45]. Moreover, Probabilistic fastText outclasses the
traditional dictionary-based embeddings and fastText in
performance both for English language and other foreign
languages.

XII. CREATING OWN EMBEDDINGS

It is also possible for a novel or expert data scientist to

generate his/ her own word embeddings in case he/ she is not

satisfied with the pre-trained embeddings available like

GloVe, ELMo or fastText, etc. The procedure is quite simple,

which starts with building a vocabulary list of all the

distinctive words and their frequency. Then, a dictionary
should be prepared, where each distinct word will be matched

with a unique id. Then, a model must be defined by

specifying myriad parameters like number of dimensions,

training algorithm, least count of words to consider while

model training and window (utmost space between target

word and its close by words). An imperative point of

consideration here is that default number of all these

parameters is also set. Subsequently, this model can be saved

either in ASCII or binary format for future use and finally it

can be supply this data in the neural networks to produce

word embeddings[46].

XIII. CONCLUSION
This research paper discusses the most vigorous subject

matter in the domain of sentiment analysis and that is word

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 29

embeddings. In comparison to the conventional embeddings
available earlier, some novel embedding methods have
surfaced and taken the world with storm.This has caused
havoc for the beginners or new-fangled scholarswho are trying
to learn and finding which out of plethora of word embedding
to use in which situation. This paper is intended to simplify
the chaos and present each available embedding technique in
as simple way possible describing in detail the working
principle, benefits and detriments and also ability to work on
numerous natural languages.Finally, it can be concluded that
no word embedding method can be confirmed as the best
method of all because their performances vary with the
dataset; thus one behave well with a dataset and may yield
poor results for another.

REFERENCES
[1] M. S. Neethu and R. Rajasree, “Sentiment analysis in twitter using

machine learning techniques”,in 2013 Fourth International Conference

on Computing, Communications and Networking Technologies (ICCCNT,
July 2013, pp. 1-5.

[2] Y. Yin, F. Wei, L. Dong, K. Xu, M. Zhang, andM. Zhou, “Unsupervised
word and dependency path embeddings for aspect term extraction”, arXiv

preprint arXiv:1605.07843, 2016.
[3] A. Collomb, C. Costea, D. Joyeux, O. Hasan, O., & Brunie, L,“A study

and comparison of sentiment analysis methods for reputation
evaluation”, Rapport de recherche RR-LIRIS-2014-002, 2014.

[4] L. K. W Tan, J. C. Na, Y. L. Theng, and K. Chang, “Phrase-level
sentiment polarity classification using rule-based typed dependencies

and additional complex phrases consideration”, Journal of Computer
Science and Technology, vol. 27, no. 3,pp. 650-666, 2012.

[5] S. S. Shwartz, andS. B. David, “Understanding machine learning: From
theory to algorithms”, Cambridge university press, 2014.

[6] W. Y. Zou, R. Socher, D. Cer, and C. D. Manning, “Bilingual word
embeddings for phrase-based machine translation”,in Proceedings of the

2013 Conference on Empirical Methods in Natural Language
Processing, Oct. 2013, pp. 1393-1398.

[7] S. Das, A. Dey, A. Pal, N. Roy, “Applications of artificial intelligence in
machine learning: review and prospect”, International Journal of

Computer Applications, vol. 115, no. 9, 2015.
[8]C. Molnar. (2020) Interpretable Machine Learning: A Guide for Making

Black Box Models Explainable. Retrieved from
https://christophm.github.io/interpretable-ml-book/index.html

[9] L. Deng and Y. Liu, Deep learning in Natural Language Processing.
Springer, 2018.

[10] Y. Li, and T. Yang, “Word embedding for understanding natural
language: a survey”,in Guide to Big Data Applications, pp. 83-104,

Springer, Cham, 2018.
[11] Online Article. (2020) Text Embedding Beta. Retrieved from

https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/blocks/text-embedding

[12] Y. Zhao, S. Huang, X. Dai, J. Zhang, and J. Chen, “Learning word
embeddings from dependency relations”,in 2014 international

conference on asian language processing (IALP), pp. 123-127, 2014.
[13] M. Kusner, Y. Sun, N. Kolkin, N and K. Weinberger, “From word

embeddings to document distances”,in International conference on
machine learning, pp. 957-966, 2015.

[14] D. Tang, F. Wei, B. Qin, N. Yang, T. Liu, and M. Zhou, “Sentiment
embeddings with applications to sentiment analysis”, IEEE transactions

on knowledge and data Engineering, vol. 28, no. 2, pp. 496-509, 2015.
[15] Y. Chen, B. Perozzi, R. Al-Rfou, andS. Skiena, “The expressive power of

word embeddings”, arXiv preprint arXiv:1301.3226, 2013.
[16] C. D. Boom, S. V. Canneyt, T. Demeester, and B. Dhoedt,

“Representation learning for very short texts using weighted word
embedding aggregation”, Pattern Recognition Letters, 80, pp. 150-156,

2016.
[17]H. Heidenreich, (2018), Introduction to Word Embeddings. Retrieved

from http://hunterheidenreich.com/blog/intro-to-word-embeddings/

[18] J. H. Paik, “A novel TF-IDF weighting scheme for effective
ranking”,in Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval, pp.
343-352, 2013.

[19] B. G. Gebre, M. Zampieri, P. Wittenburg, and T. Heskes, “Improving
native language identification with tf-idf weighting”,in the 8th NAACL

Workshop on Innovative Use of NLP for Building Educational
Applications (BEA8), pp. 216-223, 2013.

[20] A. Gebejes, and R. Huertas, “Texture characterization based on grey-
level co-occurrence matrix”, databases, vol. 9, no. 10, 2013.

[21] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization meets
the item embedding: Regularizing matrix factorization with item co-

occurrence”, in Proceedings of the 10th ACM conference on
recommender systems, pp. 59-66, 2016.

[22] Q. Luo, W. Xu, and J. Guo, “A Study on the CBOW Model's Overfitting
and Stability”,in Proceedings of the 5th International Workshop on

Web-scale Knowledge Representation Retrieval & Reasoning, pp. 9-12,
2014.

[23] Online Article. (2016) Word Embeddings for Natural Language
Processing. Retrieved from http://deep-

solutions.net/blog/WordEmbeddings.html
[24] G. Guo, S. Ouyang, F. Yuan, and X. Wang, “Approximating word

ranking and negative sampling for word embedding”, International Joint
Conferences on Artificial Intelligence Organization, 2018.

[25] L. Yang, X. Chen, Z. Liu, and M. Sun, “Improving word representations
with document labels”, IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 25, no. 4, pp. 863-870, 2017.
[26]Y. Goldberg, and O. Levy,. “word2vec Explained: deriving Mikolov et

al.'s negative-sampling word-embedding method”, arXiv preprint
arXiv:1402.3722, 2014.

[27] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their

compositionality”, in Advances in neural information processing
systems, pp. 3111-3119, 2013.

[28] K. Yoshioka, and H. Dozono, “The classification of the documents based
on word2vec and 2-layer self organizing maps”, International Journal of

Machine Learning and Computing, vol. 8, no. 3, pp. 252-255, 2018.
[29] T. Mikolov, W. T. Yih, and G. Zweig, “Linguistic regularities in

continuous space word representations”,in Proceedings of the 2013
conference of the north american chapter of the association for

computational linguistics: Human language technologies, pp. 746-751,
2013.

[30] G. Sidorov, A. Gelbukh, H. G. Adorno, and D. Pinto, “Soft similarity and
soft cosine measure: Similarity of features in vector space

model”, Computación y Sistemas, vol. 18, no. 3, 491-504, 2014.
[31] Online Article. (2020). The Synthesis Project: Materials Word

Embeddings. Retrieved from https://www.synthesisproject.org/resources
[32] O. Levy, and Y. Goldberg, “Dependency-based word

embeddings”,in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp.

302-308, 2014.
[33] X. Rong, “word2vec parameter learning explained”, arXiv preprint

arXiv:1411.2738, 2014.
[34] C. Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling

matters in deep embedding learning”,in Proceedings of the IEEE
International Conference on Computer Vision, pp. 2840-2848, 2017.

[35] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation”,in Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pp. 1532-1543, 2014.
[36]J. Pennington, R. Socher, C. D. Manning. (2014) Glove: Global vectors

for word representation. Retrieved from
https://nlp.stanford.edu/projects/glove/

[37] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T.
Mikolov, “Fasttext. zip: Compressing text classification models”, arXiv

preprint arXiv:1612.03651, 2016.
[38]I. Santos, N. Nedjah, andL. M. Mourelle, “Sentiment analysis using

convolutional neural network with fastText embeddings”,in 2017 IEEE
Latin American Conference on Computational Intelligence (LA-CCI), pp.

1-5, 2017.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 30

[39] A. Moffat, and J. Zobel, “Self-indexing inverted files for fast text
retrieval”, ACM Transactions on Information Systems (TOIS), vol. 14. no.

4, pp. 349-379, 1996.
[40] M. Nickel, and D. Kiela, “Poincaré embeddings for learning hierarchical

representations”, in Advances in neural information processing systems,
pp. 6338-6347, 2017.

[41] C. Saedi, A. Branco, J. Rodrigues, and J. Silva, “Wordnet
embeddings”,in Proceedings of the third workshop on representation

learning for NLP, pp. 122-131, 2018.
[42] V. Jha, (2018) Insight into Hierarchical Representations through Poincaré

Embedding. Retrieved online https://www.techleer.com/articles/478-
insight-into-hierarchical-representations-through-poincare-embedding/

[43] I. Chami, A. Wolf, F. Sala, and C. Ré, “Low-dimensional knowledge
graph embeddings via hyperbolic rotations”,in Graph Representation

Learning NeurIPS 2019 Workshop, 2019
[44] B. Athiwaratkun, A. G. Wilson, and A. Anandkumar, “Probabilistic

fasttext for multi-sense word embeddings”, arXiv preprint
arXiv:1806.02901, 2018

[45] J. Choi, and S. W. Lee, “Improving FastText with inverse document
frequency of subwords”, Pattern Recognition Letters, 2020.

[46] J. Brownlee, “Deep Learning for Natural Language Processing: Develop
Deep Learning Models for your Natural Language Problems”, Machine

Learning Mastery, pp. 133-143, 2017.

http://www.ijreat.org/
http://www.prdg.org/

	I. Introduction
	II. Word Embedding and its Need
	Machine learning as well as Deep learning basically uses the neural networks and its myriad variations like Convolution Neural Networks, Recurrent Neural Networks, etc. to handle the perplex problems especially in the domain of text processing. Nevert...
	In short, word embeddings can be explained as the numerical representation of a documenttexts’ semantic meaning[10]. These vectors actually provide the relation between various words or phrases of the documenti.e. the words having similar meaning have...
	III. Count-Vectorization
	IV. TF-IDF Vectorization

	V. Co-Occurrence Vectorization
	X. ELMo
	XI. Probabilistic fastText
	XII. Creating Own Embeddings
	XIII. Conclusion

